Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

International Space Station Water Usage Analysis

2008-06-29
2008-01-2009
The International Space Station (ISS) recycles water to reduce the expense of launching water on resupply vehicles. However, since these recovery systems cannot recover 100% of all water used, some resupply is needed. Water consumption, as well as water recovery, varies from crew to crew making it difficult to judge how much water is needed and when. Therefore, the ground team tracks the water usage of the crew and determines a representative rate to predict each Expedition's water needs and identify trends in changing rates. This paper describes the analyses conducted to determine how much water each crew is using for drinking and hygiene purposes and how much is used for oxygen generation. It will also show how the water usage evolved over the last three Expeditions and compare these results to the published consumables tracking reports and the Russian water specialist reports.
Technical Paper

Multi-Fuel Reforming and Fuel Cell Systems for Aviation Applications: The Role of Bio-Diesel and its Synergy with Global Interests

2008-11-11
2008-01-2855
The rising cost of fuel prices, in part due to the perception of diminishing supplies of common fuelstocks, as well as worldwide attention to reducing emissions has pushed the need to explore the use of many alternative fuels. The aviation industry has been under recent scrutiny due to its contribution of greenhouse gas emissions (GHG). Current contribution of GHG by airplanes is relatively small, 2% of the total GHG emissions, but world air traffic is anticipated to continue to grow and may have a corresponding increase in emissions. Both commercial and government aviation sectors have efforts to seek ways to lower fuel consumption through efficiency and reduce emissions. Development of a suitable alternative fuel that can be seamlessly used in place of conventional jet fuel is desirable. A strategy to enable this goal is to be fuel flexible; utilizing an array of fuels from bio-diesel to current jet fuel.
Technical Paper

Nitrogen Oxygen Recharge System (NORS) for the International Space Station

2009-07-12
2009-01-2413
The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen storage in the human spaceflight environment.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

Air Quality Simulation and Assessment (Aqsa) Model

2003-07-07
2003-01-2438
An air quality simulation and assessment (AQSA) model was developed to simulate/evaluate the integrated system performance and obtain air quality characteristics and air contaminants inside the habitable compartments. This model applies both fixed control volume and quasi-steady-state approach for a multi-volume system to assess system performance, operating constraints, and capabilities. The model also integrates a state-of-the-art probabilistic analysis tool, UNIPASS, to compute failure probability due to the uncertainties of variables. In addition, this integrated model also predicts the most likely outcomes for analyzing risks and uncertainties as well as for quantitative toxicological evaluation. This model has been successfully and independently corrected/verified by NASA/JSC to be a very effective, reliable, and accurate tool, while providing savings in both the cost and time of the analysis.
Technical Paper

International Space Station Bacteria Filter Element Post-flight Testing and Service Life Prediction

2003-07-07
2003-01-2490
The International Space Station (ISS) uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2003-07-07
2003-01-2565
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected.
Technical Paper

International Space Station (ISS) United States Carbon Dioxide Removal Assembly Blower Anomaly Resolution

2001-07-09
2001-01-2416
The Carbon Dioxide Removal Assembly (CDRA) is the primary carbon dioxide removal system located in the United States On-Orbit Segment (USOS) Laboratory module ‘Destiny’ and Node 3 on the International Space Station (ISS). CDRA is housed in a standard ISS rack defined as the Atmosphere Revitalization (AR) rack consisting of the CDRA, Trace Contaminant Control Subassembly and Major Constituent Analyzer. The AR subsystem operation and failure detection are controlled automatically using software that has provisions for override control. This paper will present the blower failure that was experienced during AR rack level and Laboratory ECLS integrated testing. The failure description, failure investigation findings and steps taken to return CDRA to flight will be covered.
Technical Paper

Experimental Study of Hole Quality in Drilling of Titanium Alloy (6AL-4V)

2002-04-16
2002-01-1517
This paper presents the experimental study of hole quality parameters in the drilling of titanium alloy (6Al-4V). Titanium alloy plates were drilled dry using three types of solid carbide drills i.e. 2-flute helical twist drill, straight flute and three-flute drill. The objective was to study the effects of process parameters like feed rate, speed and drill bit geometry on the hole quality features. Typical hole quality features in a drilling process are the hole quality measures such as surface roughness, hole diameter, hole roundness and burr height. The results indicate that proper selection of speed, feed rate, and drill geometry can optimize metal removal rate and hole quality.
Technical Paper

ESM Analysis of COTS Laundry Systems for Space Missions

2002-07-15
2002-01-2518
Clothing supply has been examined for historical, current, and planned missions. For STS, crew clothing is stowed on the orbiter and returned to JSC for refurbishment. On Mir, clothing was supplied and then disposed of on Progress for incineration on re-entry. For ISS, the Russian laundry and 75% of the US laundry is placed on Progress for destructive re-entry. The rest of the US laundry is stowed in mesh bags and returned to earth in the Multi Purpose Logistics Module (MPLM) or in the STS middeck. For previous missions, clothing was supplied and thrown away. Supplying clothing without washing dirty clothing will be costly for long-duration missions. An on-board laundry system may reduce overall mission costs, as shown in previous, less accurate, metric studies. Some design and development of flight hardware laundry systems has been completed, such as the SBIR Phase I and Phase II study performed by UMPQUA Research Company for JSC in 1993.
Technical Paper

Solid Waste Management Requirements Definition for Advanced Life Support Missions – Preliminary Results

2002-07-15
2002-01-2478
Solid Waste Management (SWM) requirements need to be defined prior to determining what technologies should be developed by the Advanced Life Support (ALS) Project. Since future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architectures outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions.
Technical Paper

Assessment of Lithium Hydroxide Conservation Via International Space Station Control of Orbiter Carbon Dioxide

2002-07-15
2002-01-2271
In order to conserve mass and volume, it was proposed that the International Space Station (ISS) control the level of carbon dioxide (CO2) in the Space Shuttle Orbiter while the Orbiter is docked to the ISS. If successful, this would greatly reduce the number of lithium hydroxide (LiOH) canisters required for each ISS-related Orbiter mission. Because of the impact on the Orbiter Environmental Control and Life Support Subsystem (ECLSS), as well as on the Orbiter flight manifest, a Space Shuttle Program (SSP) analysis was necessary. STS-108 (ISS UF1) pre-flight analysis using the Personal Computer Thermal Analyzer Program (PCTAP) predicted that the ISS would be able to control the level of CO2 in the Orbiter (and throughout the stack) under nominal conditions with no supplemental LiOH required. This analysis assumed that the Carbon Dioxide Removal Assembly (CDRA) located in the U.S.
Technical Paper

Use of Electromagnetic and Vacuum Forces on Aircraft Assembly

2002-10-01
2002-01-2630
Decades ago our innovative grandfathers developed the first automated riveting machines based on hard automation using kinematics and tools attached to a C-frame. The C-frame serves multiple functions: First, it holds the upper and lower tools in fixed positions relative to each other; second, it translates upper active tooling forces to the lower tool; and third, it embraces the part placed between the upper and lower tool. C-frames and newly developed yoke, ring and gantry machines, used for low level (first, second) fuselage and wing assembly are growing in size to exorbitant proportions to satisfy requirements of larger and larger structures. High costs are dictated by massive kinematics and complex controls that provide stability, precision, and process speed. All this is mainly needed because we have to carry mechanical forces around the part, from upper to lower tool along the C-frame, gantry, yoke, bridge, etc.
Technical Paper

Fire Resistant Composites

2002-11-05
2002-01-2957
Use of graphite/resin composites in engine nacelles has been restricted because the resin is flammable. Fiberglass/polyimide and graphite/polyimide laminates were treated with various phosphorylated polymers to obtain enhanced fire-resistance and high-char-yield products after exposure to a 2000°F flame for 15 minutes. Tensile, flexural shear, and interlaminar shear strengths were determined. Polymeric phosphorylated hydrazides were found to give the best fire-resistance.
Technical Paper

Ejection Seat Cushions Static Evaluation for Three Different Installation Rail Angles

2011-04-12
2011-01-0806
Jet fighter missions have been known to last extended period of time. The need for a comfortable and safe seat has become paramount considering that fact that uncomfortable seats can lead to numerous health issues. Several health effects like numbness, pressure sore, low back pain, and vein thrombosis have been associated with protracted sitting. The cushion, and of late the installation rail angle are the only components of the ejection seat system that can be modified to reduce these adverse effects. A comprehensive static comfort evaluation study for ejection seats was conducted. It provides comparison between a variety of operational and prototype cushions (baseline cushion, honeycomb and air-cushion) and three different installation rail angles (14°, 18°, and 22°). Three operational cockpit environment mockups with adjustable installation rail angle were built. Ten volunteer subjects, six females and four males, ages 19 to 35, participated in the seat comfort evaluation.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
X